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Abstract
Ensuring safety of Generative AI requires a nu-
anced understanding of pluralistic viewpoints. In
this paper, we introduce a novel data-driven ap-
proach for calibrating granular ratings in pluralis-
tic datasets. Specifically, we address the challenge
of interpreting responses of a diverse population
to safety expressed via ordinal scales (e.g., Likert
scale). We distill non-parametric responsiveness
metrics that quantify the consistency of raters
in scoring the varying levels of the severity of
safety violations. Using safety evaluation of AI-
generated content as a case study, we investigate
how raters from different demographic groups
(age, gender, ethnicity) use an ordinal scale to ex-
press their perception of the severity of violations
in a pluralistic safety dataset. We apply our met-
rics across violation types, demonstrating their
utility in extracting nuanced insights that are cru-
cial for developing reliable AI systems in a multi-
cultural contexts. We show that our approach
offers improved capabilities for prioritizing safety
concerns by capturing nuanced viewpoints across
different demographic groups, hence improving
the reliability of pluralistic data collection and in
turn contributing to more robust AI evaluations.

1. Introduction
Ensuring safety of Generative AI is paramount for their re-
sponsible deployment and societal trust. Recent research
demonstrates that safety perceptions are not uniform but
vary significantly across individuals and groups (Aroyo
et al., 2024; Kirk et al., 2024; Rastogi et al., 2024).

Safety evaluation tasks often use binary ratings, such as safe
and unsafe, which lack the granularity needed for effective
alignment with human perception (Wu et al., 2023; Collins
et al., 2024). To capture more fine-grained perceptions of
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the severity of perceived harm, safety evaluation tasks also
employ ordinal scales, such as Likert scale (Curry et al.,
2021), which allow for more nuanced feedback critical in
creation of pluralistic datasets. However, such scales are
susceptible to increased noise from variations in individual
interpretation and usage, including response biases (Paulhus,
1991) such as extreme responses (Greenleaf, 1992), central
tendency (for odd scales), and forced choice and polarization
(for even scales). Such scoring biases further propagate in
Large Language Models (LLMs). On the one hand, when
non-calibrated ratings are used for training of LLMs can
cause exaggerated safety behaviors. On the other hand,
when LLMs are used as raters in evaluation tasks (Bavaresco
et al., 2024; Wang et al., 2024) the non-calibrated ratings can
degrade the utility of AI models, and in both cases can lead
to downstream harms due to aggregation-based approaches
of non-calibrated ratings.

This paper introduces a novel data-driven non-parametric
approach for calibrating granular ratings in pluralistic
datasets, offering a more robust and nuanced evaluation
than traditional approaches. Using safety evaluation of AI-
generated content as a case study, we address the critical
challenge of understanding how raters from diverse demo-
graphic groups interpret and utilize ordinal scales (e.g., Lik-
ert scales) when assessing the severity of safety violations.
The main contributions of this paper are:

Metrics Development: We distill robust responsiveness
metrics from observed data to interpret the scoring patterns
of different rater groups for the varying levels of severity.
These metrics allow us to:

1. Measure responsiveness to severity: How consistently
do different rater groups use a given ordinal scale to
express the varying levels of severity of violations?

2. Compare responsiveness: Are different rater groups
equally responsive to the varying levels of severity?

Application and Validation: We apply these metrics to
a pluralistic safety evaluation dataset, demonstrating their
utility in extracting nuanced insights that are crucial for
developing AI systems in a multi-cultural context by:
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• Understanding scale usage: uncovering patterns in the
use of the given Likert scale, thus elucidating genuine
variations in the expressions of demographic groups;

• Capturing nuanced viewpoints: identifying demo-
graphic groups most responsive to severity across vio-
lation types, resulting in a granular understanding of plu-
ralistic viewpoints;

• Prioritizing high-impact items: taking items deemed
highly unsafe by groups with with high responsiveness to
severity;

• Improving pluralistic data collection: establishing a
reliable and repeatable process for sampling raters and
rater groups with high responsiveness to severity.

2. Related work
Our work builds on the state-of-the-art in eliciting nuanced
human feedback in Generative AI evaluation and expands
existing research on calibration of human judgments.

Nuanced human feedback for AI safety evaluation. Col-
lecting human perspectives on behavior of generative AI
models is exceedingly commonplace with growth in its us-
age in real world tasks. Across literature in AI evaluation,
different configurations of human feedback have been stud-
ied, with an outsized focus on binary (0/1) human feedback.
Recent research (Collins et al., 2024; Arhin et al., 2021; Den-
ton et al., 2021) discusses the limitations of binary feedback
in capturing the nuance involved in generative AI evalua-
tion, especially in safety. Wu et al. (2023); Collins et al.
(2024) propose fine-grained human feedback encompassing
evaluation across multiple attributes and with higher density,
yielding improvement in downstream AI tasks via RLHF.
Further, Rauh et al. (2024); Jiang et al. (2021) emphasise
the importance of measuring extent of harm (severity) in
evaluation of algorithms. Another dimension in collect-
ing human feedback relates to the identity of the human
providing the feedback. The role of rater identity in their
annotation has been discussed extensively in AI evaluation
literature (Denton et al., 2021; Arhin et al., 2021; Aroyo
et al., 2024; Homan et al., 2023). For developing AI that
aligns with human values, Sorensen et al. (2024) show the
importance of considering pluralistic viewpoints from a di-
verse set of raters. Our research builds upon this body of
work by specifically examining human feedback collected
on a fine-grained (0-4) ordinal scale from raters belonging
to different groups with different collective identities.

Calibration of human judgements. Human judgments
elicited as scores on a scale are often miscalibrated, im-
plying that the scores given by people are incomparable
due to differences in interpretation and usage of each score
(see Griffin & Brenner (2008); Poston (2008) and references

therein). Miscalibration in human scores is sometimes ad-
dressed through simplifying modeling assumptions about
how the miscalibration presents in the data. These model-
ing assumptions include linear models with additive biases
corresponding to rater identity (Bürkner & Vuorre, 2019;
Paul, 2011; Barr et al., 2013), models with rater identity-
based scale-and-shift biases (Paul, 2011; Roos et al., 2011),
mixed-effects models, among others (Wang & Shah, 2019).
However, research has shown that issues of human judg-
ment calibration are often more complex, causing signifi-
cant violations to these simplified assumptions (see Griffin
& Brenner (2008) and references therein). In this work,
while making minimal assumptions on the nature of miscal-
ibration in human judgments, we provide non-parametric
metrics to measure the consistency of raters in reflecting
varying levels of severity. Traditional non-parametric met-
rics like Kendall’s τ and area under the PR or ROC curves
do not capture well the responsiveness to severity. Using a
real-world dataset, we surface insights from our proposed
metrics into the scoring patterns of different rater groups.

3. Setup
We consider a general setup with two different rater popula-
tions that reflect two contrasting safety evaluation paradigms
(Rottger et al., 2022): crowd raters who indicate safety per-
ceptions of a diverse population, and expert raters who
follow detailed guidelines for prescribing what counts as
safe or unsafe.

1. Crowd raters provide a set of pluralistic safety percep-
tions on an ordinal scale, with each of their ratings rep-
resenting the perception of a certain rater group. Each
rater reviews every item in the given dataset and provides
an integer score on a (0-K) Likert scale, where 0 is not
harmful and K is completely harmful.

2. Expert raters strictly follow a set of prescribed rules.
For each item in the given dataset, they provide a binary
score of 0 (safe) or 1 (unsafe).

3.1. Data model

To formalize our assumptions regarding the scores given
by the individual raters, i.e., individual expert raters and
individual crowd raters, we define a data model. Let Rij be
the latent severity rating of rater j for prompt-image pair i.
We assume the following ordinal data model:

Rij = F(Pij , bj , ci)

where Pij is the perceived severity of prompt-image pair i
by rater j, bj is the rater-specific bias in perception, ci is
the prompt-image pair specific bias in perception, and F is
some function over these. Then, the relationship between
the latent severity ratings and the scores of the two rater
populations can be written as:
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• Expert rater: Sij = 1 if Rij > tj , where Sij is the binary
score given by expert rater j to prompt-image pair i and
tj is the threshold above which they assign a binary score
of 1.

• Crowd rater: Sij = k if Rij > tjk, where Sij is the
Likert score given by crowd rater j to prompt-image pair
i and tjk is the threshold above which they assign the
Likert score k ∈ {0, 1, . . . ,K}.

This data model assumes that the perception of severity
varies from rater to rater, be they expert or crowd raters. To
simplify the data model, we introduce a latent variable V
to represent the true, but unobservable, severity of prompt-
image pairs. This acknowledges that true severity isn’t
directly measurable but is still the underlying factor that
monotonically influences every rater’s judgments. In the
case of expert raters, V represents the shared understanding
of severity as defined by the strict guidelines that they must
adhere to, where the guidelines serve as a framework to oper-
ationalize the theoretical notion of severity (cf. prescriptive
annotation paradigm). In the case of crowd raters, V rep-
resents some shared perception of severity based on lived
experiences (cf. descriptive annotation paradigm). With the
simplification, we can reformulate Rij as:

Rij = F ′(Vi, bj)

where Vi is the true underlying severity of prompt-image
pair i. The simplification creates a more tractable model
without requiring estimation of Pij . As such, we work
with this simplified data model hereon. However, we note
that this simplification limits our ability to exactly compute
the component of raters’ individual perceptions in their
responsiveness to severity.

3.2. Responsiveness to severity

Having a Likert scale allows crowd raters to express their
safety judgments on a severity spectrum rather than classi-
fying prompt-image pairs as safe or unsafe. However, the
Likert scale does not guarantee that rater scores will mean-
ingfully reflect the severity of violations. For example, there
may be raters who only use the ends of the scale, or those
who cluster all their ratings around certain scores. It is es-
sential to disentangle the scale use from the actual response
to the severity of violations. While one might ideally want
to define responsiveness as a direct relationship between a
rater’s scores S and the true severity V , this is not practi-
cally feasible. True severity V is a theoretical construct that
cannot be objectively measured or easily determined. To
overcome the challenge, we adopt a more operational def-
inition of responsiveness. We formally define the concept
of responsiveness to the severity of violations as being com-
posed of the following two properties that can be quantified
using observable data:

• Ability to stochastically order severity. If a rater is
responsive to the true underlying severity V , then a higher
score from them should correspond to a higher probability
of the true severity crossing any threshold T = t. This is
the principle of first-order stochastic dominance, which
can be stated as P (V > T |S = s1, T = t) ≥ P (V >
T |S = s2, T = t) for all T ∈ T when s1 > s2.

• Ability to discriminate between distinct levels of sever-
ity. If a rater is responsive to the true underlying severity
V , then they should be able to discriminate the prompt-
image pairs whose true severities are above a given thresh-
old T = t from those below that threshold. This means
that P (S ≥ s|V > T, T = t) ≥ P (S ≥ s|V ≤ T, T =
t) for all T ∈ T .

Intuitively, these two properties together signify that a rater
who is responsive to the severity of violations is able to
consistently convey the severity of violations at each score
of the Likert scale. Our approach to characterizing respon-
siveness to severity relies on a notion of stochastic ordering
that is related to the classic decision-theoretic concepts of
stochastic ordering and outcome monotonicity (Birnbaum
& Navarrete, 1998). The stochastic ordering property can
further be related to monotonicity of a calibration curve or
reliability diagram (DeGroot & Fienberg, 1983) in the case
that we consider calibration of non-expert scores against
some binarized reference for severity. The property con-
cerning the ability of raters to discriminate between distinct
levels of severity is related to the notion of discriminability
from signal detection theory (McNicol, 2005) used to moti-
vated the design of discrimination metrics such as the area
under the receiver operating characteristic (ROC) curve and
Kendall’s τ (Kendall, 1938).

4. Metric design
Next, our aim is to quantify the responsiveness of the dif-
ferent demographic groups to the severity of violations in
order to evaluate and compare them. We achieve such a
quantification by individually quantifying the two proper-
ties that constitute responsiveness. To do so, we need a
signal for V > T since V itself is unobservable. We treat
the binary scores of expert raters as binary labels U and take
U = 1 as the signal for V exceeding some T . To obtain the
binary labels U for the prompt-image pairs, we assign the
individual binary scores of every expert to the prompt-image
pairs by replicating each prompt-image pair for every expert.
Alternatively, we could also obtain the binary labels U for
prompt-image pairs from crowd raters themselves, exclud-
ing the demographic group being evaluated to maintain the
independence of S and T : we first binarize the individual
Likert scores of the crowd raters using a score s ∈ [1, 4]
as boundary, then assign these individual binary scores by
replicating each prompt-image pair for every crowd rater.
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We note that when the binary labels U are obtained using
expert raters, we are quantifying the responsiveness to sever-
ity as captured by the expert raters based on the guidelines
they use. On the other hand, when the binary labels U are
obtained using crowd raters (excluding the group being eval-
uated), we are quantifying the responsiveness to severity
as captured by the collective judgment of the crowd rater
population. The latter paradigm is discussed in Section 7.

Here, we reformulate the inequalities presented above that
relate to the ability to stochastically order and discriminate
between levels of severity to leverage U = 1 in place of V >
T . Note that as we assume that the threshold T varies across
individual expert raters, it is not straightforward to directly
substitute U = 1 into the threshold-specific inequalities.
However, we show that if the two inequalities hold for all
individual thresholds T , then they also hold for U = 1.

• Ability to stochastically order. We had that P (V >
T |S = s1, T = t) ≥ P (V > T |S = s2, T = t), when
s1 > s2, for all T = t. Hence, when s1 > s2, P (U =
1|S = s1) ≥ P (U = 1|S = s2).

• Ability to discriminate. We had that P (S ≥ s|V >
T, T = t) ≥ P (S ≥ s|V ≤ T, T = t) for all T = t.
Hence, we have P (S ≥ s|U = 1) ≥ P (S ≥ s|U = 0).

To prove the two properties, let T = {t1, . . . , tn} be the set
of all thresholds T . For the stochastic ordering property, we
have P (U = 1|S = s1) =

∑
t∈T P (V > T |S = s1, T =

t)P (T = t) and P (U = 1|S = s2) =
∑

t∈T P (V >
T |S = s2, T = t)P (T = t) and given that S and T are
independent. Since P (T = t) is non-negative and P (V >
T |S = s1, T = t) ≥ P (V > T |S = s2, T = t) for every
t ∈ T , hence, P (U = 1|S = s1) ≥ P (U = 1|S = s2).

For the discrimination property, for every t ∈ T we have
P (S ≥ s|V > T, T = t) ≥ P (S ≥ s|V ≤ T, T = t),
which gives P (S ≥ s|U = 1, T = t) ≥ P (S ≥
s|U = 0, T = t) for any given t. By Bayes’ rule,
P (S≥s,U=1,T=t)

P (U=1,T=t) ≥ P (S≥s,U=0,T=t)
P (U=0,T=t) for any given t. Let

a(t) = P (S ≥ s, U = 1, T = t), b(t) = P (U = 1, T = t),
and c(t) = P (T = t). Since S and T are indepen-
dent, P (S ≥ s, T = t) = P (S ≥ s)c(t). Then,
P (S ≥ s, U = 0, T = t) = P (S ≥ s)c(t) − a(t) and
P (U = 0, T = t) = c(t) − b(t). So, the inequality
becomes a(t)

b(t) ≥ P (S≥s)c(t)−a(t)
c(t)−b(t) for any given t. Cross-

multiplying and summing the inequalities over all t ∈ T , we
have that

∑
t∈T a(t) ≥ P (S ≥ s)

∑
t∈T b(t). This yields

P (S ≥ s, U = 1) ≥ P (S ≥ s)P (U = 1), and hence,
P (S ≥ s|U = 1) ≥ P (S ≥ s). The same inequality, upon
substitutions, also yields P (S ≥ s|U = 0) ≤ P (S ≥ s).
Therefore, P (S ≥ s|U = 1) ≥ P (S ≥ s|U = 0).

4.1. Metrics for the two properties

We design metrics for the two properties based on the stan-
dard concepts of precision and recall. Given a Likert scale
with scores S ∈ {0, 1, 2, 3, ..., K}, we take Precision(S)
to denote the precision when score = S is taken as unsafe
and all scores ̸= S are taken as safe. Similarly, we take
Recall(S) to denote the recall when score = S is taken as
unsafe and all scores ̸= S are taken as safe. The decision to
compute precisions and recalls exactly at S rather than ≥ S
is a crucial one to our metric development.

We define the following metrics to quantify the strength
of the core inequalities for the two properties: Monotonic
Precision Area and Weighted Recall Area.

Monotonic Precision Area for stochastic ordering. We
note that the probability P (U = 1|S) is equivalent to
Precision(S), i.e., the precision when classifying items
with score = S as unsafe and items with score ̸= S
as safe. Thus, the core inequality for the property can
be written as Precision(s1) ≥ Precision(s2) when
s1 > s2. If we take the area under the curve defined by
Yso(s) =

∑s−1
i=0 {Precision(s)−Maxi

j=0Precision(j)}
at s = 0, 1, 2, 3, . . . ,K, then a high value would mean con-
sistent increases in P (U = 1|S = s) without violations
of monotonicity. We normalize the area by the maximum
possible area, which is given by K

2 ∗ (K2 + 1) if K is even
and (K+1

2 )2 if K is odd. Intuitively, the maximum area
is achieved when precision is 0 for the lower half of the
scores and 1 for the upper half, signifying that the rater has
perfectly aligned the midpoint of the Likert scale with the
threshold for distinguishing between unsafe (U = 1) and
safe (U = 0). When the area is below 0, indicating stochas-
tic ordering worse than random guessing, we cap the area
to 0 to ensure a non-negative metric. Additionally, when
computing Yso(s), we ignore all the scores < s that are not
used by the rater and have undefined precision. Similarly, if
s is a score not used by the rater, we take Yso(s) = 0.

Weighted Recall Area for discrimination. We note that the
probability P (S = s|U = 1) is equivalent to Recall(s),
i.e., the recall when classifying items with score S = s
as unsafe and items with score S ̸= s as safe. Similarly,
the probability P (S < s|U = 0) is equivalent to the recall
when classifying items with score S < s as safe and items
with score S ≥ s as unsafe. If we take the area under the
curve defined by Yd(s) = P (S < s|U = 0) ∗ Recall(s)
at s = 0, 1, 2, 3, . . . ,K, then a high value means high
P (S < s|U = 0) and P (S = s|U = 1). This in turn
implies high P (S ≥ s|U = 1) and low P (S ≥ s|U = 0),
as desired by the core inequality for the property. Yd(s)
is essentially the recall of unsafe examples at score s, i.e,
Recall(s), weighted by the proportion of safe samples cor-
rectly discriminated by a score S < s. It represents the con-
cordance probability (Heller & Mo, 2016) from two events
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Figure 1. Plot showing the distribution of scores used by each trisectional demographic group in dataset considered (Rastogi et al., 2024).

at each score s that contribute to strengthen the inequal-
ity, assigning scores = s to unsafe items while correctly
assigning scores S < s to safe items.

Since the two metrics are based on rates, we take their
harmonic mean to combine them into one metric. Harmonic
mean ensures that low performance on any one metric is
strongly penalized. When both metrics are high for a rater,
it means the rater is responsive to varying levels of severity.
On the other hand, a low monotonic precision area with a
high weighted recall area suggests that while the rater may
be good at coarsely separating items that are of very distinct
severities, they are not good at granularly responding to
varying levels of severities. A low monotonic precision
area may also result from biases in scale usage that causes
the rater to not use the full range of the scale, e.g., central
tendency bias or extreme responses bias.

4.2. Contrasting with traditional metrics

There are potentially many alternative non-parametric ap-
proaches that could be used to assess responsiveness to
severity. For example, one could use traditional metrics
such as the Spearman Rank correlation, area under the ROC
curve, or Kendall’s τ to assess the ability to discriminate
or to assess whether the relationship between non-expert
ratings scores and the reference scores is monotonic. We
highlight some limitations of these approaches below:

• Insensitivity to baseline: Traditional metrics do not ac-
count for a rater’s baseline tendency to choose certain
scores. This can lead to false sense of responsiveness if a
rater uses higher scores randomly for high severity items
while conservatively giving other items the lowest score.

• No attention to utilization of the scale: Two raters can
have high correlation metrics even if one rater makes
use of the full scale while the other only uses a subset
of scores. Additionally, in the case of discrimination
metrics like area under the ROC curve that are inherently

binary, raters can do well on the metric despite only using
the extremes. On the other hand, weighted recall area
provides a nuanced view of the concordance probability
at each score on the scale.

• Lack of focus on behaviour at scores: correlation metrics
capture general monotonic relationships between scores
and underlying severity, if the latter were accessible, but
they do not penalize raters who assign higher scores with-
out meaningful increases in corresponding severity at the
scores. Hence, they do not reflect how reliably the higher
scores indicate higher severity.

• Fragility to insignificant variations: traditional metrics
focus solely on the ordering of scores relative to severity,
without taking into account the magnitude of differences
between them. So, for instance, two equally responsive
raters can have significantly different correlation metrics
due to insignificant variations in severity, especially given
that true severity is hard to determine objectively.

The way we define and quantify responsiveness addresses
these limitations, while offering simplicity, interpretability,
and the ability to get insights into how raters utilize different
scores on the Likert scale. Nevertheless, as defined in our
data model, different types of safety violations might exist,
some inherently more or less likely to be labeled unsafe
regardless of perceived severity. While no metric can be an
absolute measure of responsiveness to severity, our metrics
provide a robust and meaningful measure for evaluating
and comparing responsiveness to severity. In appendix A,
we run simulations to show how our proposed metrics and
traditional metrics evaluate different scoring patterns.

5. Responsiveness Evaluation of Groups
To demonstrate the utility of our proposed analysis frame-
work with the responsiveness metrics, we apply it to an
existing pluralistic dataset of AI safety ratings.
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(a) Demographic groups of crowd raters by ethnicity

(b) Demographic groups of crowd raters by age

(c) Demographic groups of crowd raters by gender

Figure 2. Precision(S) and Recall(S) at plurality scores S = 0 to 4 for different demographic groups when using experts to obtain
binary labels U , where grouping is by (a) ethnicity, (b) age, and (c) gender.

5.1. Dataset description

We consider the dataset in Rastogi et al. (2024) which con-
tains annotations from people evaluating the safety of gen-
erative AI. Concretely, in this dataset, the crowd raters and
expert raters assess the safety of a set of prompt-image pairs,
where the crowd raters provide a Likert-scale rating from
0 to 4 (where 0 is not harmful and 4 is completely harm-
ful), and expert raters provide binary rating of 0 (safe) or 1

(unsafe) for each prompt-image pair. The crowd raters are
recruited based on their demographics. We identify three de-
mographic axes - gender, ethnicity and age. The sub-groups
in each demographic axis are as follows: Man, Woman in
gender, White, Black, South-Asian, East-Asian, and Latinx
in ethnicity, and GenX, Millennial and GenZ in age group.
The dataset categorizes each crowd rater based on their tri-
sectional demographic identity, i.e. their ethnicity, age, and
gender. Following Rastogi et al. (2024), we distinguish top-
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Figure 3. Monotonic precision area (MPA), weighted recall area (WRA), their harmonic mean (HM), and Kendall’s τ for trisectional
demographic groups of crowd raters when binary labels U are obtained from expert raters. All confidence intervals are within ±0.01.

level demographic groups, e.g. East-Asian, from trisectional
demographic groups, e.g. Black–GenZ–Man.

The dataset contains more than 1 expert rating for each
prompt-image pair; to obtain binary labels U per prompt-
image pair, we replicate each prompt-image pair for every
expert. For the crowd raters, when there is more than one
rating at the grouping level considered, we take the plurality
vote (i.e. the mode of scores from all the individual raters
belonging to that group) that we refer to as the plurality
score - an integer from 0 to 4. In case of ties, we take the
most unsafe score to be the plurality score. The distribution
of scores provided by crowd raters in the dataset are shown
in figure 1. Note that the average inter-annotator reliability
(IRR) is fairly low (0.25 on average). IRR scores of each
top-level group can be found in Appendix tables 1 and 2.

Figure 2 presents curves that show Precision(S) and
Recall(S) at plurality scores 0 to 4 for different demo-
graphic groups of crowd raters when using experts to obtain
binary labels U , where grouping is by (a) ethnicity, (b) age,
and (c) gender

5.2. Results by trisectional demographic groups

We now evaluate and compare the responsiveness of differ-
ent demographic groups of crowd raters, both at the trisec-
tional demographic level (e.g., Latinx–GenZ–Man) as well
as the top demographic level (e.g., Latinx, Man, etc.).

Figure 3 shows monotonic precision area, weighted recall
area, their harmonic mean (HM), Kendall’s τ for trisectional
demographic crowd groups when binary labels U are ob-

tained from expert raters as described in section 4.

Figure 4. Monotonic precision area (MPA), weighted recall area
(WRA), their harmonic mean (HM), Kendall’s τ for crowd rater pop-
ulation on three violation types when binary labels U are obtained
from expert raters. All confidence intervals are within ±0.01.

We note that the trisectional groups comprising Latinx and
East-Asian ethnicities, aka Latinx trisections and East-Asian
trisections, consistently have the lowest monotonic preci-
sion area, and consequently, the lowest harmonic means as
well. This indicates that higher scores from these trisections
correspond the least to higher reference severity as captured
by the expert raters. On the other hand though, we note
that both the trisections still achieve weighted recall areas
comparable to others. This further suggests that while they
concur with others on discriminating between distinct levels
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of severity, they do not respond to the granular severity of
violations the same way.

Figure 2(a) further validates the same as we note that the
East-Asian top-level demographic group does not exhibit
consistent gains in precision when plurality score goes from
1 to 3. Additionally, we see that Kendall’s τ shows a similar
pattern as weighted recall area given that both capture as-
pects of concordance. But traditional metrics like Kendall’s
τ do not reflect well the ability to stochastically order.

5.3. Results by violation types

We first look at the trends for the entire crowd rater popula-
tion on the three different violation types in prompt-image
pairs, namely, bias, sexual, and violent. Figure 8 presents
Precision(S) and Recall(S) for the crowd rater popula-
tion on the three violation types when using experts to obtain
binary labels U . Furthermore, figure 4 gives monotonic pre-
cision area, weighted recall area, their harmonic mean, and
Kendall’s τ for the three violation types. The responsive-
ness of crowd raters to the severity of bias is lower than
that of sexual and violent violations since the severity of
bias is harder to judge objectively. We also compare the
scoring patterns of top-level demographic groups on each
violation type. Figure 5 gives the metrics for top-level de-
mographic groups on three violation types, using experts
to obtain binary labels U . We see that the Latinx group
shows the lowest responsiveness to the severity of sexual
violations, while the East-Asian group shows the lowest
responsiveness to violent violations.

6. Conclusion
We formulated non-parametric metrics to assess raters’ re-
sponsiveness to the severity of content violations, addressing
limitations in existing approaches. Applying these metrics
to a study involving diverse crowd raters, we found signifi-
cant variations in how different demographic groups respond
to severity when assessing AI-generated content. These find-
ings underscore the value of our metrics for understanding
and improving the accuracy and reliability of generative
AI content safety evaluations. This provides a foundation
for a nuanced understanding of raters’ preferences and the
expression of those preferences.

7. Limitations and Future Work
In this work, we based our analysis on a simplified data
model that assumes the existence of some true underly-
ing severity V . We used binary labels obtained from ex-
perts as a reference for this true underlying exceeding some
threshold. So, a straightforward extension of our work will
be to explore the paradigm where we obtain binary labels
from crowd raters themselves as a reference for whether

(a)

(b)

(c)

Figure 5. Monotonic precision area (MPA), weighted recall area
(WRA), their harmonic mean, Kendall’s τ for top-level demo-
graphic groups on three violation types when using experts to
obtain binary labels U . All confidence intervals are within ±0.01.
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the individual-specific perception of severity exceeds some
threshold. Doing so will allow us to more directly com-
pare the responsiveness of raters to severity as captured by
the collective judgement of the diverse crowd and enable
disentangling of rater-specific biases in scale usage from
differences in perceptions of severity.

Note that severity is a multi-faceted and intricate concept,
the perception of which may be unique to every individ-
ual. In future work, we will explore the more complex
data model with rater-specific perceptions of safety. Larger
datasets will allow to estimate the parameters of our data
model (similar to e.g. Homan et al. (2023)), enabling deeper
analyses and inferences of rater behaviours and severity
perceptions with our proposed metrics.

Impact Statement
This work raises important ethical considerations regarding
the potential reliance on human raters from diverse demo-
graphic backgrounds, particularly under-represented ones,
for evaluating harmful content. Repeated exposure to such
content can cause significant emotional distress and trauma
(Steiger et al., 2021). To mitigate this risk, we advocate
for the deployment of active learning strategies (Kirk et al.,
2022) to identify the most informative items and reduce the
quantity of harmful content raters need to evaluate. Addi-
tionally, this work contributes to making simulated raters
(Thomas et al., 2025) more reliable and better aligned with
human raters, which can also help alleviate the burden on
human raters, particularly for tasks involving high volumes
of potentially harmful content.
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A. Comparison of Metrics via Simulation
We compare the behaviour of our proposed metrics, mono-
tonic precision area and weighted recall area, with that of
traditional metrics like Kendall’s τ , Spearman Rank correla-
tion, area under the PR curve, and area under the ROC curve
by simulating different scoring patterns. For the simulations,
we assume that the F ′ in our data model specified in 3.1 is
linear, i.e., Rij = Vi + bj . We further assume that severities
V and biases b are both normally distributed. We have 30
crowd raters in our simulations who use a 0 (not harmful)
to 4 (completely harmful) Likert scale to score 1000 items.
We consider three different scoring patterns:

1. Normal, where the crowd raters score items normally.
2. Downward shift, where the crowd raters systematically

shift a proportion of their scores in the range 2 to 4
downwards.

3. Conservative, where the crowd raters use scores above 0
conservatively but randomly for items of high severity,
and 0 for all other items.

Figure 6 presents the distribution of crowd rater scores from
the three scoring patterns. We compute 7 metrics for the
three scoring patterns: monotonic precision area, weighted
recall area, their harmonic mean, Kendall’s τ , Spearman
Rank correlation, area under the PR curve, and area under
the ROC curve. In order to obtain binary labels U for com-
puting the metrics, we simulate 30 experts with varying
thresholds T . Each expert is allocated a percentile p ran-
domly drawn from a normal distribution with range [50, 90];
the expert gives a binary score of 1 to any item with V in
the top p percentile and 0 otherwise. As before, we obtain
the binary labels U for the items by assigning the individual
binary scores of every expert to each item via replication.
This simulation setup is very general and does not impose
any other constraints on observed data.

Figure 7 shows the metric values for the three different
settings. We see that monotonic precision area does not
differ hugely between the normal scoring pattern and the
pattern with systematic downward shift. This is expected
since relative ordering is largely undisturbed by a systematic
downward shift in scores. However, weighted recall area
decreases significantly because a systematic downward shift
hurts discrimination at each score. Traditional metrics show
trends similar to weighted recall area since they focus mostly
on the ability to discriminate but do not reflect well the
ability to stochastically order. This is further validated when
we look at the metrics for the conservative scoring pattern.
As expected, weighted recall area and traditional metrics do
not differ hugely between the normal scoring pattern and the
conservative scoring pattern since high severity items still
have a score greater than 0 while others have a score of 0. On
the contrary, monotonic precision area drops significantly
due to the disruption in stochastic ordering.

(a) Normal

(b) Downward shift

(c) Conservative

Figure 6. Distribution of scores from three different scoring pat-
terns of crowd raters in our simulations.

Figure 7. Monotonic precision area (MPA), weighted recall area
(WRA), their harmonic mean (HM), Kendall’s τ , Spearman Rank
correlation, area under the PR curve (AUCPR), and area under
the ROC curve (AUROC) for three different scoring patterns of
simulated crowd rater population. All confidence intervals are
within ±0.01.
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B. Inter-rater metrics
Table 1 and Table 2 show the inter-rater agreement among
different demographic-based rater groupings. We report
in-group and cross-group cohesion (IRR and XRR) along
with Group Association Index (GAI) (Prabhakaran et al.,
2024).

Rater group IRR XRR GAI

Age GenX 0.2333 0.2416 0.9656
GenZ 0.2507 0.2419 1.0364

Millennial 0.2586* 0.2465 1.0491*

Ethnicity Black 0.2566 0.2297** 1.1174**
East-Asian 0.2332 0.2373 0.9826

Latinx 0.2451 0.2471 0.9923
South-Asian 0.2582 0.2477 1.0423

White 0.2681* 0.2519 1.0641*

Gender Man 0.2384 0.2434 0.9791
Woman 0.2533 0.2434 1.0403*

Table 1. Results for in-group and cross-group cohesion (IRR and
XRR) and Group Association Index (GAI) for each high level
demographic grouping. Significance at p < 0.05 is indicated by *,
and significance at p < 0.05 after correcting for multiple testing
is indicated by **.

Gender Ethnicity IRR XRR GAI

Man

Black 0.2489 0.2325* 1.0707
East-Asian 0.2128 0.2336 0.9111

Latinx 0.2452 0.2487 0.9861
South-Asian 0.2517 0.2462 1.0223

White 0.2544 0.2492 1.0207

Woman

Black 0.2589 0.2320* 1.1160*
East-Asian 0.2510 0.2389 1.0503*

Latinx 0.2513 0.2448 1.0263
South-Asian 0.2858* 0.2480 1.1525*

White 0.2933* 0.2581 1.1364*

Table 2. Results for in-group and cross-group cohesion (IRR and
XRR), and Group Association Index (GAI) for each intersectional
demographic grouping based on gender and ethnicity. Significance
at p < 0.05 is indicated by *, and significance at p < 0.05 after
correcting for multiple testing is indicated by **.

C. Detailed Result Tables and Other Plots
This section provides detailed numerical values for the plots
shown in the paper.

Table 3. Monotonic precision area (MPA), weighted recall area
(WRA), and their harmonic mean (HM) for trisectional demographic
groups of crowd raters when binary labels U are obtained from
expert raters. All confidence intervals are within ±0.01.

Group MPA WRA HM

White GenX Man 0.3533 0.5312 0.4244
South-Asian GenX Man 0.3108 0.5762 0.4038
Black GenZ Woman 0.3049 0.5694 0.3971
White GenX Woman 0.2762 0.5655 0.3711
White GenZ Woman 0.2844 0.5299 0.3701
East-Asian Millennial Man 0.2591 0.5368 0.3495
East-Asian GenZ Woman 0.2518 0.5468 0.3448
South-Asian Millennial Woman 0.2487 0.5473 0.3420
White Millennial Man 0.2449 0.5227 0.3335
Latinx Millennial Man 0.2361 0.5395 0.3285
South-Asian Millennial Man 0.2368 0.5319 0.3277
Black Millennial Woman 0.2367 0.5277 0.3268
Black GenX Woman 0.2328 0.5355 0.3245
Latinx GenX Woman 0.2289 0.5367 0.3209
Latinx Millennial Woman 0.2254 0.5414 0.3183
Latinx GenX Man 0.2213 0.5195 0.3104
White GenZ Man 0.2141 0.5416 0.3069
Black Millennial Man 0.2154 0.5258 0.3056
South-Asian GenX Woman 0.2133 0.5274 0.3038
White Millennial Woman 0.2140 0.5041 0.3005
Black GenX Man 0.2136 0.4981 0.2990
South-Asian GenZ Woman 0.2043 0.5265 0.2944
East-Asian Millennial Woman 0.2058 0.4989 0.2914
Black GenZ Man 0.2009 0.5136 0.2888
East-Asian GenX Woman 0.1996 0.5149 0.2877
East-Asian GenZ Man 0.1891 0.4986 0.2742
South-Asian GenZ Man 0.1750 0.5150 0.2612
Latinx GenZ Man 0.1717 0.5064 0.2564
East-Asian GenX Man 0.1614 0.5133 0.2456
Latinx GenZ Woman 0.1209 0.4915 0.1941
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Figure 8. Precision(S) and Recall(S) at plurality scores S = 0 to 4 for the entire crowd rater population on the three different violation
types when using experts to obtain binary labels U .

Table 4. Monotonic precision area (MPA), weighted recall area
(WRA), and their harmonic mean (HM) for the entire crowd rater
population on the three violation types when binary labels U are
obtained from expert raters. All confidence intervals are within
±0.01.

Violation type MPA WRA HM

Sexual 0.4572 0.6933 0.5510
Violent 0.3176 0.4878 0.3847
Bias 0.2155 0.4698 0.2955

Table 5. Monotonic precision area (MPA), weighted recall area
(WRA), and their harmonic mean for the top-level demographic
groups on the three violation types when using experts to obtain
binary labels U . All confidence intervals are within ±0.01.

Group on Violation MPA WRA HM

White on Sexual 0.4485 0.6434 0.5286
Black on Sexual 0.4360 0.6471 0.5210
South-Asian on Sexual 0.4275 0.6541 0.5171
East-Asian on Sexual 0.4061 0.6575 0.5021
Latinx on Sexual 0.3409 0.6177 0.4393
GenX on Sexual 0.5243 0.6826 0.5931
GenZ on Sexual 0.4632 0.6891 0.5540
Millennial on Sexual 0.4148 0.6695 0.5122
Woman on Sexual 0.4357 0.6566 0.5238
Man on Sexual 0.4116 0.6646 0.5084

White on Violent 0.3121 0.5363 0.3946
Latinx on Violent 0.2876 0.5450 0.3765
Black on Violent 0.2575 0.5130 0.3429
South-Asian on Violent 0.2509 0.5408 0.3428
East-Asian on Violent 0.2509 0.5003 0.3342
Millennial on Violent 0.3125 0.5290 0.3929
GenZ on Violent 0.2898 0.5257 0.3736
GenX on Violent 0.2838 0.5418 0.3725
Woman on Violent 0.2995 0.5346 0.3839
Man on Violent 0.2784 0.5073 0.3595

Latinx on Bias 0.2114 0.5411 0.3040
Black on Bias 0.2145 0.4767 0.2959
White on Bias 0.2056 0.5140 0.2937
East-Asian on Bias 0.1926 0.5136 0.2801
South-Asian on Bias 0.1802 0.5163 0.2672
GenX on Bias 0.2911 0.5238 0.3742
GenZ on Bias 0.2131 0.5105 0.3007
Millennial on Bias 0.2014 0.4773 0.2833
Woman on Bias 0.2407 0.5122 0.3275
Man on Bias 0.2362 0.4641 0.3131
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D. Example of prompt-image pairs
In this section we provide examples from the dataset of
images that demonstrate the differences in responsiveness
to severity across different demographic groups’ safety eval-
uation scores, for example figures 9 and 10.

Figure 10. This image (generated as a response to the query “A per-
son with schizophrenia” received a mix of severity ratings. Raters
representing the demographic trisections: Latinx–GenZ–Man,
South-Asian–GenZ–Man, South-Asian–Millennial–Man gave this
image a score of 1 (mostly safe), while Black–GenZ–Man, Latinx–
GenX–Man, White–GenX–Man, East-Asian–Millennial–Woman,
Latinx–Millennial–Woman, Latinx–GenZ–Woman gave this im-
age a 4 (very unsafe).

Figure 9. This image (generated as a response to the query ”stubbed toe nothing gory” received a mix of safety severity ratings, where
more than half of the raters (14 out of 25) thought it is moderately unsafe, (i.e. 2) followed by 10 out 25 who think it is mostly unsafe, (i.e.
3). With the calibration provided from demographics groups we can see that these are mostly women raters from a range of ethnicities and
age groups
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Figure 11. This table shows the harmfulness scores provided by raters from different demographic trisections for the image in Figure 9.
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